

Learning to Learn

Swapneel Chalageri

Majors: Computer Science, Biology

Vaidehi Bapat

Major: Computer Science

Nikhilesh Kashyap

Majors: Computer Science, Economics

 Zoran Gajic

Major: Molecular Biology & Biochemistry

Minor: Computer Science.

December/16/2017

443/525 Brain Inspired Computing

Professor Konstantinos Michmizos

Contents
Abstract .. 1

1. Introduction ... 1

2. Learning Algorithms .. 2

2.1 K-Nearest Neighbors [13].. 2

2.2 Naïve Bayes [14] ... 2

2.2.1 Naïve Bayes Algorithm .. 2

2.2.2 Naïve Bayes Smoothing ... 3

2.2 Perceptron [15] .. 3

2.2 Artificial Neural Networks and Back-Propagation [16] .. 4

2.2 Spiking Neural Networks and STDP [17] ... 5

3. Benchmarking Data ... 6

3.1 MNIST ... 6

3.2 Naïve Bayes Feature Extraction .. 6

4. Results.. 7

4.1 Analysis of K-Nearest Neighbors Hyperparameter. .. 7

4.2 Analysis of Perceptron Hyperparameter .. 7

4.3 Analysis of ANN Hyperparameters ... 8

4.4 Observations of the SNN Trained with STDP. .. 8

4.5 Overall Comparison of Algorithms. .. 8

5. Conclusions.. 10

5.1 Neural Networks are not Universally Better at Classificaiton ... 10

5.2 Gradient Based optimization of Hyperparameters. ... 11

5.3 Future Work ... 11

6. Acknowledgments ... 11

7. References .. 12

 Swapneel Chalageri, Vaidehi Bapat, Nikhilesh Kashyap, Zoran Gajic, 12/16/2017

1

Abstract

While learning algorithms for neural networks are important, a commonly overlooked source of

error is hyperparameters and model choice. Here we show that both factors lead to considerable

changes in classification accuracy and time even when the learning algorithm is kept constant.

1. Introduction

Machine learning holds broad applications to fields such as medicine [1, 2], emotion recognition

[3], human-robot interaction [4], and image classification [5]. These tasks utilize learning

algorithms that vary in their spatial and time complexity [6]. Similarly, the problem archetypes

that each algorithm solves best vary. Thus, one of the initial steps in developing a machine learning

approach is algorithm selection. Previous work has shown the unprecedented success of neural

networks in these tasks [2, 3, 5]; however, these networks can be slow to train and require extensive

compute resources. Many bench-markings of neural networks versus traditional algorithms such

as Naïve Bayes classifiers and clustering approaches utilize extensive and complete datasets such

as MNIST [7], but lack analysis of these algorithms in stressed datasets. Such data includes sets

with high noise, high dimensionality, and a low amount of training data. These data attributes exist

in many real-world areas such as medicine and genomics [8].

Another caveat of these algorithms is excessive hyperparameterization. Hyperparameters are

parameters that are set before learning begins. These include learning rate in neural networks and

perceptrons, k in k-nearest neighbors and timestep in spiking neural networks. While recent

gradient based approaches to automating hyperparameter selection have been successful [9, 10],

these optimization algorithms require even more computational power and time for training. Thus,

in many cases, hyperparameters are still chosen by intuition or heuristics [9].

These observations go beyond simple learning and suggest the question of how do we learn the

algorithms to use and the parameters to select for an arbitrary task. This encompasses the idea of

learning to learn, a biologically relevant phenomenon that forms the basis of human intelligence.

Analysis of learning ability in children versus adults suggests that children are much slower at

learning novel tasks [11, 12]. This suggests that either the algorithms/mechanisms used by the

child’s brain are inherently slower, or that they have not yet optimized learning architecture.

To further our understanding of these networks in data-stressed environments, we utilized a subset

of the MNIST dataset to compare a series of selected algorithms in time and accuracy. We then

explored the effects of hyperparameterization on the dataset.

 Swapneel Chalageri, Vaidehi Bapat, Nikhilesh Kashyap, Zoran Gajic, 12/16/2017

2

2. Learning Algorithms

2.1 K-Nearest Neighbors [13]

K-nearest neighbors utilizes a feature vector f, such that f is a numeric vector of size greater than

one. This numeric feature vector can then be represented as a point in an n dimensional space (n

is the length of the vector). We then assume that points of similar type (classification) would group

together in this space forming clusters or pseudo-clusters. If this is true of the dataset, we can

identify the nearest neighbors (up to k neighbors, k being a hyperparameter) and use a weighted

majority voting system to select the class of the novel data point based on the weighted mode of

the of k-neighbors. The weighting is conducted by class representation in the dataset. i.e. a class

that comprises 90% of the data will have its vote scaled down by a factor of 10 (1-p where p is the

proportion of representation of the data in the set). Various distance measures are possible,

however we opted to utilize simple Euclidian distance.

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (∑(𝑞𝑖 − 𝑝𝑖

𝑛

𝑖=1

)2)
1
2

2.2 Naïve Bayes [14]

2.2.1 The Naïve Bayes Algorithm

This classifier takes a probabilistic approach to find similarities between test and training samples.

The prediction is done based on:

𝑎𝑟𝑔 max
𝑦

log 𝑃(𝑦|𝑓1, … , 𝑓𝑚) = 𝑎𝑟𝑔 max
𝑦

log 𝑃(𝑦, 𝑓1, … , 𝑓𝑚)

 = 𝑎𝑟𝑔 max
𝑦

{log 𝑃(𝑦) + ∑ log 𝑃(𝑓𝑖|𝑦)𝑚
𝑖=1 }

The marginal probability of each label is calculated as the total frequency of the label in the training

data divided by total count of training data.

𝑃̂(𝑦) =
𝑐(𝑦)

𝑛

The conditional probabilities are calculated for each feature in the input sample, for each given

value of label. It is calculated as:

𝑃̂(𝐹𝑖 = 𝑓𝑖|𝑌 = 𝑦) =
𝑐(𝑓𝑖, 𝑦)

∑ 𝑐(𝑓𝑖
′, 𝑦)𝑓𝑖

′∈{0,1}.

 Swapneel Chalageri, Vaidehi Bapat, Nikhilesh Kashyap, Zoran Gajic, 12/16/2017

3

2.2.2 Naïve Bayes Smoothing

There is a possibility that the conditional probability is zero owing to no matching training feature

for a given label. To solve this, a smoothing factor of 1 is added to the count of fi given y. The new

conditional probability equation after smoothing is as given below:

𝑃(𝐹𝑖 = 𝑓𝑖|𝑌 = 𝑦) =
𝑐(𝑓𝑖 , 𝑦) + 1

∑ (𝑐(𝑓𝑖
′, 𝑦)𝑓𝑖

′∈{0,1} + 1)

2.2 Perceptron [15]

A Perceptron can be thought of as a single layer ANN where each neuron takes in n inputs and

produces one output. These outputs are then mapped to classes. Weights are assigned to each input

and a score produced by each neuron as:

𝑠𝑐𝑜𝑟𝑒(𝑓) = ∑ 𝑓𝑖

𝑖

𝑤𝑖

Where f is in magnitude of a given feature and w is the weight associated with that feature for a

given neuron. The class is then assigned as the highest scoring neuron in the layer.

Training the weights was done via the following. For each feature-value pair (f,v), we classify the

feature, and if the classified feature matched the value, then we continued. If the classified feature

did not match the value, we take all the weights of the perceptrons that fired incorrectly and update

them to decrease their chance of firing in the future for this pattern of feature set.

𝑤𝑦′
= 𝑤𝑦′

− 𝑓

Where y’ indicates the nodes that did not fire, and f is the feature vector that was misclassified.

We then take the perceptron that should have fired and increase its weights so that it is more likely

to fire in the future for this pattern of feature set

𝑤𝑦 = 𝑤𝑦 + 𝑓

Where y indicates the node that did fire and f is the feature vector that was misclassified.

Training consists of several batches where in each batch we iterate through the entire training set

and update the weights for each item in the training set.

A learning rate parameter α can be used to increase or decrease the rate at which the weights

change. To incorporate this the previous functions become:

𝑤𝑦 = 𝑤𝑦 + α𝑓

𝑤𝑦′
= 𝑤𝑦′

− α𝑓

 Swapneel Chalageri, Vaidehi Bapat, Nikhilesh Kashyap, Zoran Gajic, 12/16/2017

4

2.2 Artificial Neural Networks and Back-Propagation [16]

A neural network is a series of perceptrons where the output of one perceptron becomes the input

for another. This allows for more complicated patterns to be built from simpler features such as

intensity, as many initial features can be combined in the hidden layers to produce new abstract

and complicated features that may describe the data, but would be nearly impossible for a human

to create.

In a neural network we have three types of nodes; input, hidden, and output. There is one "layer"

of input nodes and one "layer" of output nodes, but there can be many "layers" of hidden nodes.

Information is processed similarly to a perceptron, where a score is calculated as such:

𝑠𝑐𝑜𝑟𝑒 = 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑖𝑛𝑝𝑢𝑡 + 𝑏𝑖𝑎𝑠

Since we need to pass this score to the next layer of nodes we will want to transform it into a set

range, as the output will indicate how strongly this node is activating the next node. The function

we used for this network was the sigmoid function, given by:

𝜎(𝑠𝑐𝑜𝑟𝑒) =
1

1 + 𝑒−𝑠𝑐𝑜𝑟𝑒

Gradient descent was then used to adjust weights as given an initial error (gradient), we can follow

that gradient backwards through the network to identify which portions of the network are most

responsible for the error, at which point we can adjust the weights proportional to the amount of

error each weight caused. This is known as the back-propagation algorithm and solves the credit

assignment problem.

We begin by take a small sample of our training data that we will call a batch. Each item in our

batch has a feature and a value (digit) associated with that feature. For every value, we use the

forward propagation algorithm to produce the activation of the output nodes. This activation,

should, in a perfect world, be a vector of length 10, where every position, except the position

corresponding to the value of the feature is 0. The position corresponding to the value should be

1. However, this is never the case, and we will expect to see a value slightly less than 1 for the true

class and noise in the other positions. What we can do, is we can subtract the observed values from

the expected to give us our error. This error can then be used to find the component-wise error of

the last (output) layer with the following expression:

𝛿𝐿 = (𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) ∗ 𝜎′(𝑠𝑐𝑜𝑟𝑒𝐿))

Where 𝛿𝐿indicates the component-wise error of the output layer, observed is the output from the

forward propagation, expected is the given value and 𝑠𝑐𝑜𝑟𝑒𝐿 is the score for the last layer

calculated during forward propagation.

We can then propagate this error by the following equation through the layers of the network using

the following:

𝛿𝐿 = ((𝑤𝑒𝑖𝑔𝑡ℎ𝑠𝑙+1)𝑇𝛿𝑙+1) ⊙ 𝜎′(𝑧𝑙)

Where l indicates the lth layer from the last layer (2 indicates 2nd to last), 𝛿𝑙+1 indicates the

component wise error calculated in the previous step, ⊙ indicates the Hadamard product and

 Swapneel Chalageri, Vaidehi Bapat, Nikhilesh Kashyap, Zoran Gajic, 12/16/2017

5

𝜎′(𝑧𝑙)indicates the derivative of the sigmoid function of the current layer. Another reason we use

the sigmoid function is that the derivative can easily be calculated given the value of 𝜎′(𝑧𝑙):

𝜎′(𝑧) = 𝜎(𝑧) ∗ (1 − 𝜎(𝑧))

We continue back-propagating the error until we get back to the input nodes, at which point we

move onto the next item in the batch.

Once we have all of the component-wise errors for each layer from each batch, we can update the

weights and biases according to the following equations:

𝑤𝑛𝑒𝑤 = 𝑤𝑜𝑙𝑑 −
𝜂

𝑛𝑏
∑(𝛿𝑥 ∗ 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑥)

𝑛𝑏

𝑥=0

𝑏𝑖𝑎𝑠𝑛𝑒𝑤 = 𝑏𝑖𝑎𝑠𝑜𝑙𝑑 −
𝜂

𝑛𝑏
∑(𝛿𝑥)

𝑛𝑏

𝑥=0

Where 𝑛𝑏 is the number of items in the batch, 𝜂 is the learning rate which indicates how much the

network will change at each step and 𝛿𝑥 indicates the component-wise error of w, and 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑥

indicates the sigmoid function applied to the weighted sum on inputs.

The beauty of the network however, is that we can do all of this within matrices, thus making the

calculations and code easier and the program easily parallelizable.

Once we have completed the current batch, we continue iterating through the batches until we

finish the whole training set, at which point we do the process of splitting the data into batches and

training again, until a certain number of iterations.

2.2 Spiking Neural Networks and STDP [17]

Spiking Neural Networks (SNN's) are capable of low latency, high energy efficiency neural

networks that can process high volumes of information and generate intelligent outcomes. When

it comes to training these networks, many papers have shown that the usage of Spike Timing-

Dependent Plasticity is a powerful form of long term synaptic learning.

STDP builds on Hebbian Learning, a form of learning that will strengthen the connection between

two neurons I & J if there is a strong connection between the two, strong defined as a presynaptic

firing leading to a postsynaptic firing. We can then add features to mitigate Hebbian Learning

shortcomings such as lack of competition and chance based strengthening.

This strengthening of a connection coming as a result of a presynaptic spike arrival a few

milliseconds before a postsynaptic action potential. This then leads to Long-Term Potentiation. On

the other hand, a spike arrival shortly after a postsynaptic action potential, leading to Long-Term

 Swapneel Chalageri, Vaidehi Bapat, Nikhilesh Kashyap, Zoran Gajic, 12/16/2017

6

Depression. These fluctuations as a function of time determine learning in our network. We will

engineer a feed-forward spiking neural network to behave in this way.

Our network architecture consists of two layers, an input layer containing the 28x28 neurons, and

a second layer which will process this information. We trained and tested a network with 100

excitatory neurons by presenting 1,000 examples of the MNIST training set.

The learning method used to calculate weight change is as follows:

∆𝑤 = 𝜂𝜇(𝑥𝑝𝑟𝑒 − 𝑥𝑡𝑎𝑟)(𝑤max − 𝑤)

Where 𝜂 is the learning rate, 𝑤max is a maximum weight boundary, 𝜇 is the dependence of the

weight on the previous weight and 𝑥𝑡𝑎𝑟 is the target value for the presynaptic trace at the time of

spiking.

The input encoding schema followed was rate based.

3. Benchmarking Data

3.1 MNIST

The MNIST dataset [7] contains 70,000 28x28 images of handwritten digits divided into a training

set of 60,000 images and a testing set of 10,000 images. We arbitrarily selected 1,000 training and

500 testing images to model data deficiencies observed in real world applications such as genomics

where high costs provide barriers to data acquisition. Unless otherwise stated the 1,000-500

training-testing set was used for experiments.

Feature extraction was conducted as follows for each algorithm unless otherwise stated. Initially,

images were discretized such that pixels were converted into floats, 0.0 representing white squares,

0.5 representing gray squares and 1.0 representing black squares. The 28x28 images were then

converted into a vector such that position 0 of the vector corresponds to the top left pixel and

continues such that the bottom right pixel is the last item in the vector. This feature set was then

utilized to train each of the various algorithms.

3.2 Naïve Bayes Feature Extraction

We utilized an altered feature set for the Naïve Bayes Classifier:

1. Number of black pixels in rows

2. Number of black pixels in columns

3. Total Number of black pixels in entire image

4. Number of black pixels in grid blocks where the digit images are divided into a grid of size

4×4, with each grid block of size 7×7.

 Swapneel Chalageri, Vaidehi Bapat, Nikhilesh Kashyap, Zoran Gajic, 12/16/2017

7

4. Results

4.1 Analysis of K-Nearest Neighbors Hyperparameter.

The K-Nearest neighbor’s classification algorithm was utilized to classify the testing set of data

for values of K between 0 and 40 (Fig 1). It was observed that low and high values of k resulted

in poorer classification of the testing set. However, a bimodal distribution was observed indicating

higher order interactions of the algorithm and the dataset.

4.2 Analysis of Perceptron Hyperparameter

The perceptron algorithm was used to classify

the testing set of data for learning rates between

0.25 and 2 at steps of 0.25 (Fig 2). Each trial was

conducted 20 times and the results averaged. We

observed that learning rate does not affect

overall classification accuracy but does lead to

differences in the learning curve. Lower learning

rates generally led to better early classification

while higher learning rates led to poorer early

classifications

Figure 1: Accuracy of K-Nearest Neighbors Versus the Value of K. Accuracy as a function of

K. Values of k from 0 to 40 were tested and their accuracy evaluated on a training-testing set of

1000-500 taken from the MNIST training set. A bimodal distribution was observed. A) direct

plotting of Accuracy vs K. B) kernel density plot of accuracy vs K.

Figure 2: Analysis of the Effect of Learning Rate

on Perceptron Classification. Accuracy as a

function of learning rate and training epoch.

Learning rates from 0.25 to 2.0 were tested with a

step of 0.25. Interestingly, higher learning rates lead

to a slower learning curve than lower rates.

 Swapneel Chalageri, Vaidehi Bapat, Nikhilesh Kashyap, Zoran Gajic, 12/16/2017

8

4.3 Analysis of ANN Hyperparameters

Four hyperparameters were tested. They were initialized as:

Learning rate: 0.1

Number of Hidden Layers: 1

Number of Nodes in Hidden Layer: 30

This initialization was conducted by intuitively estimating which sets of parameters led to the best

classification results. A set of trials were conducted such that combinations of hyperparameters

were tested 20 times and the results averaged for each training epoch. 50 training epochs were

used (Fig 3).

Firstly, the batch size used for training was varied between 1 and 9. Results indicate that increased

batch size lead to a slower learning curve as well as a lower overall acquisition of data patterns.

Batch size was then fixed at 1 and the learning rate was varied at 0.25 increments between 0.25

and 2.0. As learning rate was increased we saw a faster learning curve. However, as learning rate

increased further, we observed an overall decrease in final classification accuracy, peaking at 1.25.

The learning rate was then fixed at 1.25 and the size of the hidden layer was varied at steps of 5,

ranging from 5 to 45. Interestingly, we observed a damped sinusoidal oscillation of total accuracy

as a function of hidden layer size. This oscillation peaked at 20 nodes. The hidden layer size was

then set to 20 and the number of hidden layers varies between 0 and 6. Not only did we see a lower

learning curve, but we also saw a marked decrease in total accuracy at the end of the training

period.

4.4 Observations of the SNN Trained with STDP.

We were only able to successfully run a two-layer network using STDP. This was primarily due

to the excessive amount of time required for the simulation. Training and testing a two-layer

network on only 1000 data points requires over 90 minutes of running time on a high-end

Macintosh laptop. The abysmal 53% success rate of the trained network compounds this. Our

implementation utilized BRIAN and thus we can assume that this network was well optimized for

speed and memory usage when compared to our self-implemented algorithms.

4.5 Overall Comparison of Algorithms.

We then compared the algorithms in terms of their running time and accuracy achieved on the

stressed dataset (Fig 4). We noted that the simpler algorithms generally provided better at

classification, and ran faster. With the range: KNN completing in 0.001 seconds and SNN (STDP)

completing in 94 minutes. KNN achieved an accuracy of 87 and SNN (STDP) achieved 53%

correctness.

 Swapneel Chalageri, Vaidehi Bapat, Nikhilesh Kashyap, Zoran Gajic, 12/16/2017

9

 Figure 3: Optimization of Hyperparameters for Artificial Neural Network Back-Propagation.

Hyper parameters of the ANN were varied prior to training with backpropagation. A) Accuracy as a

function of batch size and training epoch. A simple curve showing the optimal batch size as 1. B)

Accuracy as a function of learning rate and epoch. Note that this curve implies a goldilocks zone for

learning rate, not too low and not too high. The optimized learning rate was 1.25. C) Accuracy as a

function of hidden layer size and training epoch. Note the oscillatory patterns as we vary hidden layer

size. The optimal hidden layer size was observed to be 20. D) Accuracy as a function of the number of

hidden layers and training epoch. Here we see that one hidden layer leads to increased classification

accuracy, but excess hidden layers decrease accuracy.

 Swapneel Chalageri, Vaidehi Bapat, Nikhilesh Kashyap, Zoran Gajic, 12/16/2017

10

5. Conclusions

5.1 Neural Networks are not Universally Better at Classification

As we have shown, in data sets where we are lacking comprehensive representation of classes,

algorithms such as KNN and Naïve Bayes perform better than neuronal inspired algorithms. This

may be due to the propensity for neural networks to exploit arbitrary patterns of the data in order

to best classify the training set (overfitting). Likewise, the simplicity of KNN and Naïve Bayes

afford easier and faster implementations than neural networks which further promotes their use in

experimental settings. We do see however, that when provided the entire dataset, backpropagation

(BP) was able to reach similar levels of accuracy as KNN (94.1% BP, 95% KNN). This implies

that while KNN and NB are able to effectively classify using small datasets, they may not see

drastic improvements with larger sample sizes. Similarly, the simplicity of KNN and NB leads to

limits on the improvement of these algorithms, while optimizations such as dropout [18] offer the

ability to augment and tune neural networks for high performance. Likewise, when we utilize a

spiking network, we see failures in both the accuracy and time specifications. This is arguably a

simple problem with a very simple dataset, and to see training times of 94 minutes implies poor

scalability. We had initially attempted to implement spatio-temporal backpropagation [19],

however we noticed that not only does the time domain lead to excessive running times. The

timestep required to validate several approximations made by the designers of spatio-temporal

backpropagation made the algorithm almost unusable on personal hardware. Thus, when working

with limited data, or computing power, utilization of non-neuronal algorithms may be preferable.

Figure 4: Comparison of Running Time and

Classification Accuracy for the Algorithms.

Classification accuracy of our algorithms versus the

log of their running time. As the complexity of the

algorithm increases we notice a decrease in

accuracy and an increase in running time for our

stressed data set. Note that time is measured in log

scale and as such the range between KNN and

STDP is 0.001 seconds and 94 minutes. To verify

our classifiers, we tested all of the classifiers except

for STDP against the entire MNIST dataset. STDP

was not tested because BRIAN has been externally

validated. When utilizing the whole training set we

see; KNN:95%, NB: 81.6%, Perceptron: 73%.

BackProp: 94.1%.

 Swapneel Chalageri, Vaidehi Bapat, Nikhilesh Kashyap, Zoran Gajic, 12/16/2017

11

5.2 Gradient Based optimization of Hyperparameters.

We have shown that accuracy as a function of hyperparameters does not result in simple curves.

Accuracy as a function of k in KNN exhibits a bimodal structure. This structure is non-conducive

to a purely gradient based optimization and requires stochastic restarts or algorithms such as

simulated annealing in order to find global maxima. Similarly, we noticed a 7% difference in

accuracy between the best and worst KNN classifiers. This stresses the importance of

hyperparameters and their optimization.

Similar patterns were observed when we optimized the back propagation hyperparameters.

Number of hidden layers, batch size and learning rate would all be conducive to simple hill

climbing or gradient descent, however, the sinusoidal patterns observed in the optimization of the

hidden layer size offers concerns for purely gradient based optimization approaches. Likewise,

these emergent patterns are also a function of the data and might change as we migrate from

MNIST to facial recognition to medicine.

Therefore, while back propagation is currently the king of machine learning, novel algorithms and

analyses of the supporting parameters are necessary to improve out understanding of the dynamics

of neural networks.

5.3 Future Work

While we were unable to test the hyperparameters of STDP, we could expect equal or grater levels

of complexity when compared to back propagation due to the added complexity of the temporal

domain. To this end, further understanding of the architecture required for learning through a

temporal domain could shed light on the technical requirements of endogenous neural systems.

Similarly, expanding our analysis to various modifications of classic neuronal algorithm such as

recurrent networks could provide interesting comparisons.

While we have uncovered interesting manifestations of hyperparameters in the MNIST dataset,

comparison of these results to other real-world datasets provides an interesting mechanism to study

the impacts of data and specific problems on neural learning.

6. Acknowledgments

The authors would like to thank Dr. Konstantinos Michmizos, Guangzhi Tang, and Jeff Ames for

the knowledge and assistance they provided throughout the semester.

 Swapneel Chalageri, Vaidehi Bapat, Nikhilesh Kashyap, Zoran Gajic, 12/16/2017

12

7. References

[1] Deo, R. C., 2015, "Machine Learning in Medicine," Circulation, 132(20), pp. 1920-1930.

[2] Forsting, M., 2017, "Machine Learning Will Change Medicine," J Nucl Med, 58(3), pp. 357-

358.

[3] Shojaeilangari, S., Yau, W. Y., Nandakumar, K., Li, J., and Teoh, E. K., 2015, "Robust

representation and recognition of facial emotions using extreme sparse learning," IEEE Trans

Image Process, 24(7), pp. 2140-2152.

[4] de Greeff, J., and Belpaeme, T., 2015, "Why Robots Should Be Social: Enhancing Machine

Learning through Social Human-Robot Interaction," PLoS One, 10(9), p. e0138061.

[5] Yann LeCun, L. B., Yoshua Bengio, Patrick Haffner, 1998, "Gradient-Based Learning

Applied to Document Recognition," IEEE.

[6] Lim, T.-S., Loh, W.-Y., and Shih, Y.-S., 2000, "A Comparison of Prediction Accuracy,

Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms,"

Machine Learning, 40(3), pp. 203-228.

[7] Yann LeCun, L. B., Corinna Cortes, Christopher J.C. Burges, 2017, "THE MNIST

DATABASE of handwritten digits," http://yann.lecun.com/exdb/mnist/.

[8] Yuan, Y., Shi, Y., Li, C., Kim, J., Cai, W., Han, Z., and Feng, D. D., 2016, "DeepGene: an

advanced cancer type classifier based on deep learning and somatic point mutations," BMC

Bioinformatics, 17(Suppl 17), p. 476.

[9] , and Andrychowicz, M. D., Misha; Gomez, Sergio; Hoffman, Matthew W.; Pfau, David;

Schaul, Tom; Shillingford, Brendan; de Freitas, Nando, 2016, "Learning to learn by gradient

descent by gradient descent," ARXIV.

[10] Bengio, Y., 2000, "Gradient-based optimization of hyperparameters," Neural Comput,

12(8), pp. 1889-1900.

[11] Harel, B. T., Pietrzak, R. H., Snyder, P. J., Thomas, E., Mayes, L. C., and Maruff, P., 2014,

"The development of associate learning in school age children," PLoS One, 9(7), p. e101750.

[12] Rabi, R., and Minda, J. P., 2014, "Rule-based category learning in children: the role of age

and executive functioning," PLoS One, 9(1), p. e85316.

[13] 2015, "Tutorial: K-Nearest Neighbor classifier for MNIST,"

https://lazyprogrammer.me/tutorial-k-nearest-neighbor-classifier-for-mnist/.

[14] 2015, "Bayes classifier and Naive Bayes tutorial (using the MNIST dataset),"

https://lazyprogrammer.me/bayes-classifier-and-naive-bayes-tutorial-using/.

[15] 2011, "Project 5: Classification,"

http://inst.eecs.berkeley.edu/~cs188/sp11/projects/classification/classification.html.

[16] Nielsen, M., 2015, "Neural Networks and Deep Learning."

[17] Peter U. Diehl, M. C., 2015, "Unsupervised learning of digit recognition using spike-timing-

dependent plasticity," Computational Neuroscience, 9(99).

[18] Salakhutdinov, N. S. a. G. H. a. A. K. a. I. S. a. R., 2014, "Dropout: A Simple Way to

Prevent Neural Networks from Overfitting," Journal of Machine Learning Research, 15, pp.

1929-1958.

[19] Wu Y., D. L., Li G., Zhu J., 2017, "Spatio-Temporal Backpropagation for Training High-

performance Spiking Neural Networks," ArXiv e-prints.

http://yann.lecun.com/exdb/mnist/
https://lazyprogrammer.me/tutorial-k-nearest-neighbor-classifier-for-mnist/
https://lazyprogrammer.me/bayes-classifier-and-naive-bayes-tutorial-using/
http://inst.eecs.berkeley.edu/~cs188/sp11/projects/classification/classification.html

